Selective Catalytic Reduction (SCR) of NO with Methane over CoZSM-5 and HZSM-5 Zeolites: On the Role of Free Radicals and Competitive Oxidation Reactions

Dmitri B. Lukyanov,¹ E. A. Lombardo,² Gustave A. Sill, Julie L. d'Itri, and W. Keith Hall³

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Received March 1, 1996; revised June 21, 1996; accepted June 25, 1996

The reactions of CH₄ with NO, NO₂, and O₂, and with the mixtures of $NO_x + O_2$, were studied over CoZSM-5 and HZSM-5 zeolites. Based on the comparison of the "light-off" temperatures as well as the activation energies of these reactions, a conclusion is drawn that over both catalysts at temperatures below 500°C NO reduction into N₂ and CH₄ oxidation into CO_x are coupled and initiated by the reaction of CH₄ with NO₂. The results demonstrate that this reaction may be considered as a limiting reaction step of NO₂ reduction into N₂, and of the SCR reaction for the mixture of $CH_4 + NO + O_2$ when O_2 is present in large amounts. With the latter mixture when O2 concentration is relatively low (up to about 1.5%) another reaction step, namely, the catalytic oxidation of NO by O₂ into NO₂ appears to control the rate of the SCR process. Thus, an important role of O₂ is to convert NO into NO₂. At low temperatures (below 400°C) O_2 does not compete with NO_x for CH_4 , but even at these temperatures O₂ participates in oxidation of the intermediate reaction species decreasing in this way the selectivity of the SCR process. At higher temperatures (above 450°C) a strong competition between O₂ and NO_x for CH₄ is observed and this results in a further decrease in the process selectivity. It is shown that the higher SCR selectivity of HZSM-5 catalyst in comparison with CoZSM-5 is due to the stronger competition between O₂ and NO₂ for CH₄ over the latter catalyst. The effects of space velocity and reactor size were briefly explored. These results show that the reaction pathways are the same for both catalysts studied in this work. Based on these, and literature results, the formation of CH₃ free radical is postulated and possible reactions of this radical with NO_x and O₂, that form the pathways of the SCR process, are considered. Finally, the possible role of gas phase reactions in the SCR process is discussed. © 1996 Academic Press, Inc.

INTRODUCTION

Reduction of NO_x (nitric oxide and nitrogen dioxide) to N_2 by hydrocarbons in the presence of excess oxygen (SCR) is potentially a very important process for environmental

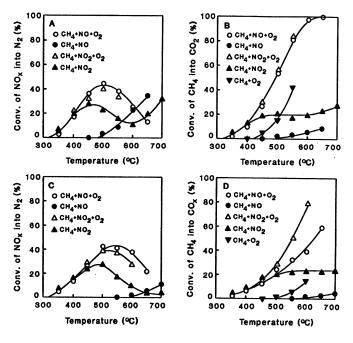
catalysis (1–3). This reaction proceeds with relatively high rates over a number of ZSM-5 catalysts with various metal cations and has been the subject of numerous investigations during the last several years. Most of this work has been performed on CuZSM-5 catalysts with C₂+ hydrocarbons as reductants (see reviews (2, 3)), but more recently, CoZSM-5 and HZSM-5 zeolites were reported (4-7) to be effective catalysts for the SCR of NO using CH₄ as the reductant. It was shown that O₂ greatly enhances the NO conversion into N₂, and an important role of NO₂ in the initiation of the SCR process over these and other ZSM-5 based catalysts has been delineated (6-15). Hence, the possibilities exist that either NO₂ or O₂ dominates in the initiation process. Evidence favoring the former has been presented (9–15), but the reaction of CH_4 with O_2 alone was not included in these studies. In addition, it has been suggested (7) that it might be better to look at SCR as a competitive co-oxidation of methane with NO_x and O_2 , rather than as a selective reduction of NO in the presence of oxygen, i.e., to shift the focus from reduction of NO into N₂ to the competitive oxidation of hydrocarbons by NO_x and O_2 . In the present work, the reactions of CH₄ over CoZSM-5 and HZSM-5 zeolites with the mixtures of $NO + O_2$ and $NO_2 + O_2$ have been studied and compared with the three oxidizing components tested separately. The same reactions were studied over NaZSM-5 zeolite. Based on these results possible pathways of the SCR process over CoZSM-5 and HZSM-5 catalysts have been suggested. The chemistry developed has led to a microscopic kinetic treatment that formally yields very similar results to those for the macroscopic reaction model used by Li and Armor (16) for CoFerr.

EXPERIMENTAL

The reactions were carried out in the steady state flow mode as in earlier work (15, 17). Three catalysts CoZSM-5, HZSM-5 and NaZSM-5 (Si/Al = 11) were studied in this work. The cation exchange level was 98% and 100% for CoZSM-5 and HZSM-5, respectively. The catalyst preparation and the standard pretreatment in O₂ used prior to

¹ Present address: Department of Chemistry, UMIST, P.O. Box 88, Manchester M6O 1QD, U.K.

² On leave from INCAPE, Santa Fe, Argentina.


³ To whom correspondence should be addressed.

reaction have been described previously (15, 17). Pretreatment was in flowing O_2 at increasing temperatures to 773 K for 12 h. The feed comprised CH₄ (0.28%), NO (0.21%) or NO₂ (0.21%), and/or O₂ (2.6%) in He. The flow rate was 75 ml/min and the gas hourly space velocity (GHSV) was varied between 4,500 and 225,000 h⁻¹ by changing the weight of catalyst samples from 500 to 9 mg. The gases used were all of >99.9% purity.

RESULTS AND DISCUSSION

Reactions of CH₄ with Different Oxidizing Compounds

Figure 1 shows the effect of temperature and feed composition on the conversion of NO_x into N_2 and of CH_4 into CO_x over CoZSM-5 and HZSM-5 catalysts at a GHSV of 45,000 and 9,000 h⁻¹, respectively. These data demonstrate the very similar behavior of the two catalysts studied (note, however, that the CoZSM-5 was reacting at five times the SVH of the HZSM-5) and indicate that for every reaction of CH₄ with NO_x in the presence or absence of O_2 the "light-off" temperature of methane combustion coincides with the temperature at which N₂ formation is initiated. In the presence of O_2 this temperature was about 350°C regardless of the nitrogen oxide used. Moreover, in the absence of O_2 "light-off" occurred with NO_2 at the same temperature, but with NO 500° and 600°C were required for CoZSM-5 and

FIG. 1. Reactions of CH₄ with different oxidizing compounds over CoZSM-5 (A, B) and HZSM-5 (C, D) catalysts: conversion of NO_x into N₂ (A, C) and of CH₄ into CO_x (B, D) as function of temperature. Catalyst weight was 50 and 250 mg for CoZSM-5 and HZSM-5 samples, respectively. Feed contained 0.28% CH₄, 0.21% NO or 0.21% NO₂ (when used), and 2.6% O₂ (when used) in He at a flow rate of 75 ml/min.

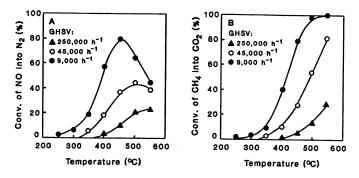


FIG. 2. Effect of temperature and space velocity on the conversion of NO into N_2 (A) and of CH₄ into CO₂ (B) over CoZSM-5 catalyst. Feed contained 0.21% NO, 0.28% CH₄ and 2.6% O₂ in He at a flow rate of 75 ml/min.

HZSM-5 catalysts, respectively. Similarly, in the absence of NO_x, oxidation of CH_4 by O_2 was observed only above 450° and 500°C, respectively (see Figs. 1B and 1D).

The observed values of the "light-off" temperature of CH₄ catalytic combustion and of the temperature at which N₂ formation is initiated should be a function of the space velocity. Figure 2 and Table 1 confirm this expectation and show that the temperature shifts caused by the space velocity change are the same for all reactions studied. Taken together with the fact that over CoZSM-5 (18) and HZSM-5 (14) catalysts NO can be oxidized by O₂ into NO₂ at temperatures as low as 200–300°C, our results suggest that the SCR of NO into N₂ and CH₄ oxidation into CO_x are coupled and initiated by NO₂ reaction with CH₄. There is ample IR evidence showing that strongly adsorbed NO₂ is formed and exists on the surface of Cu- and CoZSM-5 and reaction temperatures (18, 24). On the other hand one would not expect CH₄ to adsorb nondissociatively under these conditions. Therefore it will be assumed that CH₄ (g) reacts with NO₂

TABLE 1

Effect of Space Velocity and Feed Composition on the "Light-Off" Temperature (°C) at Which N_2 Formation is Initiated over CoZSM-5 Catalyst

Feed ^a		GHSV (h ⁻¹)				
	Reaction	22,500	45,000	250,000		
$\overline{CH_4 + NO}$	NO into N ₂	450°C	500°C	550°C		
	CH ₄ into CO ₂	450 °	500°	550°		
$CH_4 + NO + O_2$	NO into N ₂	300 °	350 °	400 °		
	CH ₄ into CO ₂	300 °	350°	400 °		
$CH_4 + NO_2$	NO ₂ into N ₂	300 °	350 °	400 °		
	CH ₄ into CO ₂	300 °	350°	400 °		
$CH_4 + NO_2 + O_2$	NO ₂ into N ₂	300 °	350°	_		
	CH ₄ into CO ₂	300 °	350°	_		
$CH_4 + O_2$	CH ₄ into CO ₂	400 °	450 °	500°		

^{*a*} Feed contained 0.28% CH₄, 0.21% NO or 0.21% NO₂ (when used) and 2.6% O₂ (when used) in He at a flow rate of 75 ml/min.

(ads) to initiate the reaction. This idea is supported by the work of Cant and co-workers (19, 20) who showed a first order isotope effect on the rates of both methane coupling and N_2 formation by SCR over CoZSM-5 when CD₄ was substituted for CH₄. This pinpoints the rate determining step as the breaking of a CH vs a CD bond in the formation of CH₃. in both reactions.

Reaction of CH₄ with NO₂

It follows from the above results that the interaction of CH₄ with NO₂ is a key reaction step in the SCR process. Consequently, this reaction was studied in detail and some typical results are shown in Fig. 3. Previously, we have found (15) that in the absence of methane, NO_2 decomposes into $NO + \frac{1}{2}O_2$ over CoZSM-5 and HZSM-5 catalysts at temperatures higher than about 350°C. At 400°C this reaction under our conditions produces comparable amounts of NO and NO2. With methane in the feed additional reactions occur (Fig. 3): (i) reduction into NO, and (ii) reduction into N₂. The O₂ formed during these reactions and by disproportionation of NO₂ is used to oxidize CH₄ into CO₂ over CoZSM-5 or into $CO_2 + CO$ over HZSM-5. The highest conversion of NO₂ was reduction into NO. At low temperatures (300-400°C) the rate of this reaction, as determined under conditions of a differential reactor, was about two times higher than the rate of N₂ formation (Table 2). With

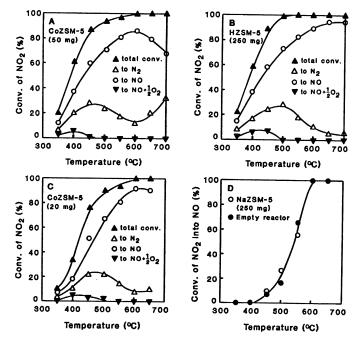


FIG. 3. Conversion of NO₂ into different products by reaction with CH₄ over CoZSM-5 (A, C), HZSM-5 (B) and NaZSM-5 (D) catalysts, and in the empty reactor (D). Catalyst weight was 50 mg (A), 250 mg (B, D) and 20 mg (C). Feed contained 0.21% NO₂ and 0.28% CH₄ in He at a flow rate of 75 ml/min. Data obtained in the empty reactor were taken from Ref. 15.

Activation Energies and Differential Rates (μ mol/g min) of NO₂ Reduction and of CH₄ Oxidation over CoZSM-5 and HZSM-5 Catalysts^a

TABLE 2

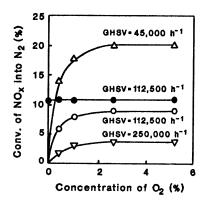
	Temperature (°C)				Ea
	300	350	400	450	(kcal/mol)
CoZSM-5					
A. Rate of NO ₂ to N ₂	2.0	8.8	37.4	_	22
B. Rate of NO ₂ to NO	3.4	17.8	64.8	_	22
C. Rate of CH ₄ to CO ₂	1.9	8.3	34.9	_	22
HZSM-5					
D. Rate of NO ₂ to N ₂		2.5	5.7	11.0	13.5
E. Rate of NO ₂ to NO	—	5.4	12.9	29.5	14
F. Rate of CH ₄ to CO ₂		2.7	5.6	12.0	13.5

 a Feed contained 0.21% NO_2 and 0.28% CH_4 in He at a flow rate of 75 ml/min.

increasing temperature (see Figs. 3A, 3B and 3C) the concentration of O_2 first increased to about 400°C and then decreased, and at temperatures higher than 500°C oxygen was not observed in the reaction products. Simultaneously, the total conversion of NO₂ (into NO and N₂) reached 100%. An increase in temperature above 500°C resulted in an increase in formation of NO at the expense of N₂. Perhaps this behavior resulted from the gas phase reaction of NO₂ with CH₄ (Fig. 3D). This reaction occurred at temperatures higher than 450°C and increased in rate steeply with temperature, producing NO only; N₂ formation was not observed (15).

It is clear from Fig. 3 that formation of NO and N₂ is initiated at the same temperature. Moreover, Table 2 demonstrates that both reactions proceed with the same activation energy. Taken together, these two facts lead us to the conclusion that reactions of NO₂ reduction into NO and N₂ are coupled and have the same limiting step, namely, the activation of methane by NO2. Figs. 3A, 3B and 3C as well as Table 2 demonstrate that at temperatures up to 400°C the ratios of the rates of conversion of NO₂ into NO and N₂ do not change significantly and are near 2. With further increase in temperature more NO₂ is converted into NO at the expense of the N₂ formed. This shows that, while the limiting step is the same for both reactions, the pathways of these reactions include different reaction steps and, consequently, different intermediate species. The last statement agrees completely with the previously reported data (15) on the homogeneous reaction between CH_4 and NO_2 where formation of NO only was observed.

Additional information on the reaction system (NO₂ + CH₄) follows from Fig. 3A. These data were obtained over CoZSM-5 catalyst at a GHSV of 45,000 h⁻¹. As shown in Fig. 1A, at this space velocity and at temperatures higher than 500°C the direct reaction between NO and CH₄ occurs resulting in N₂ formation. Obviously, this reaction occurs


TABLE 3

also in the system of $NO_2 + CH_4$ and explains a decrease in NO_2 conversion into NO and a corresponding increase in NO_2 conversion into N_2 observed at temperatures higher than 600°C (see Figs. 1A and 3A). However, in the SCR of NO_x in the presence of O_2 , the reaction between NO and CH₄ does not play a significant role since it proceeds only at high temperatures and with rates much lower than the rate of CH₄ oxidation by O_2 .

*SCR of NO with CH*⁴ *in the Presence of O*² *as a Competitive Oxidation of CH*⁴

An important role of O_2 in the SCR process is to convert NO into NO₂. This view stems from the above discussion as well as the literature (8–18) and is further supported by Fig. 4 where NO conversion into N₂ is shown to depend strongly on the O₂ concentration up to values of about 1.5% O₂. At higher O₂ concentrations NO conversion into N₂ becomes invariant with O₂ concentration. Similar results were obtained earlier over CoZSM-5 catalysts by Li and Armor (4) and by Petunchi *et al.* (17) over CuZSM-5 using *i*-C₄H₁₀. In these cases the leveling off of NO conversion into N₂ at high O₂ concentrations was not explained. In contrast to NO, NO₂ conversion into N₂ is completely independent of O₂ content in the feed (solid points of Fig. 4).

These results show that O_2 does not play an appreciable role in the initiation process when NO_2 is present in the feed stream (the same conclusion follows from Fig. 1). With NO in the feed, the presence of O_2 is required for NO_2 formation. In this case, an increase in O_2 concentration up to about 1.5% results in an increase in the rate of NO_2 formation and, consequently, in an increase in its concentration. In this range of O_2 concentrations the rate of NO oxidation by O_2 into NO_2 controls the rate of the overall process. At a certain O_2 concentration (under our conditions, at about 2%) the rate of NO_2 formation exceeds the rate of NO_2 consumption and a change of the limiting step of the SCR process occurs. At this point the reaction of NO_2 with CH₄

FIG. 4. Effect of O_2 concentration and space velocity on the conversion of NO_x into N_2 over CoZSM-5 catalyst at 400°C. Feed contained 0.28% CH₄, 0.21% NO or 0.21% NO₂ (solid points), and *x*% O₂ in He at a flow rate of 75 ml/min.

Activation Energies and Differential Rates (μ mol/g min) of NO Reduction and of CH₄ Oxidation during the SCR Reaction over CoZSM-5 and HZSM-5 Catalysts^a

	Temperature (°C)				Ea		
	350	400	450	500	550	600	(kcal/mol)
CoZSM-5							
A. NO reduction rate ^b	6.4	27	78	173	188	—	21
B. CH ₄ oxidation rate ^b	3.9	18	54	140	300	—	21
C. CH ₄ oxidation rate ^c	0.30	1.8	8.8	37	115	_	31
D. Ratio B/C	13.0	10.0	6.1	3.8	2.6	—	
HZSM-5							
E. NO reduction rate ^b	1.8	4.2	8.4	15.9	18.3	17.3	14.5
F. CH ₄ oxidation rate ^b	1.0	2.4	5.0	9.5	15.0	19.5	14
G. CH ₄ oxidation rate ^c	n.d.	n.d.	0.17	0.61	1.8	5.3	29
H. Ratio F/G	—	—	29.4	15.6	8.3	3.7	

Note. The flow rate was 75 ml/min.

^{*a*} Feed stream contained 0.21% NO + 0.28% CH₄ + 2.6% O₂ in He.

^b SCR reaction.

 c For CH4 oxidation by O2 alone (0.28% CH4 + 2.6% O2 in He were used).

n.d., no data available; because of low conversion of CH₄ rates could not be determined accurately.

becomes the rate limiting step of the overall process, and a further increase in O_2 concentration does not alter the observed rate (Fig. 4).

The data presented above clearly demonstrate that the SCR process (coupled reactions of NO_x reduction into N_2 and of CH_4 oxidation by NO_x into CO_x) is initiated by reaction of CH₄ with NO₂. At the same time, Fig. 1 shows that not only NO_x but O_2 also may participate in CH_4 oxidation. The ratio of these rates is critical for the selectivity of the SCR process. Hence, it was of interest to compare quantitatively the rate of CH₄ oxidation by O₂ alone with the rate of CH₄ oxidation in the course of the SCR process, i.e., by the mixture of NO_x and O_2 . Of course, it was also interesting to compare the rate of the latter reaction with the rate of NO_x reduction into N₂, since such a comparison will provide additional information about the relationship between transformations of NO_x into N₂ and of CH₄ into CO_x. The absolute rates of CH₄ oxidation by O₂ are compared with those occurring in the SCR process in Table 3. The rates of these reactions were determined under differential reaction conditions. Several points should be made in connection with these data. First, the Arrhenius dependence for the rate of NO reduction into N₂ is valid up to about 500°C, i.e., in the temperature range where thermodynamics favors NO_2 over NO (9, 21). At higher temperatures formation of NO₂ from NO and O₂ becomes less favorable and this explains the bending of the Arrhenius plot (not shown) at higher temperatures. Second, CH₄ oxidation into CO_x and NO reduction into N₂ proceed with the same activation energy and comparable rates showing that these two

reactions are coupled and have the same rate limiting step. Moreover, the observed activation energies of the SCR process over CoZSM-5 and HZSM-5 catalysts (about 21 and 14 kcal/mol, respectively) coincide within experimental error with the activation energies observed over these two catalysts for the reaction of NO₂ with CH₄ (see Table 2). Based on this latter fact we can conclude that the SCR of NO with CH₄ in the presence of excess O₂ is initiated by the reaction of NO₂ with CH₄ and that this reaction is the rate limiting step of the overall process. Third, the activation energy of the SCR reaction is higher with CoZSM-5 catalyst than with HZSM-5, and reaction of CH₄ with O₂ has much the highest activation energy, explaining the decrease in selectivity for N₂ formation with increasing temperature (7). Interestingly, the value of the activation energy determined in this work for the SCR process over CoZSM-5 catalyst coincides with that (22 kcal/mol) reported by Li and Armor (22) for the SCR process over Co-ferrierite catalyst. *Finally*, Table 3 shows that at low temperatures the rates of CH₄ oxidation by O₂ alone are much lower than the rates of CH₄ oxidation during the SCR reaction, e.g., at 400°C with CoZSM-5 catalyst the difference between these rates is about 10 times. With increasing temperatures this difference diminishes. In considering Table 3 recall that the rate of CH₄ oxidation during the SCR process includes a contribution from CH₄ oxidation by O₂ alone. However, at low temperatures O₂ should not compete with NO₂ for CH₄; at high temperatures such a competition will exist and results in the observed decrease in the SCR selectivity (7).

The above statement is supported by the data of Fig. 5 which show the effect of temperature on the selectivity of the SCR process (given by the slope of the curves at any point). These data indicate that the highest selectivity of the SCR process is observed at low temperatures and low conversions of the two reactants (NO and CH₄). Interest-

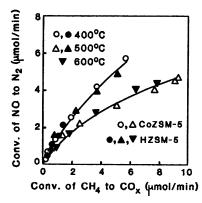


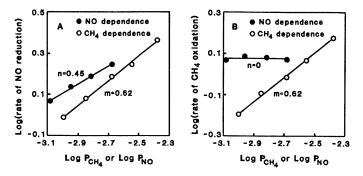
FIG. 5. Effect of temperature on the selectivity of the SCR reaction over CoZSM-5 (open symbols) and HZSM-5 (solid symbols) catalysts. Feed contained 0.28% CH₄, 0.21% NO and 2.6% O₂ in He at a flow rate of 75 ml/min (flow rates of CH₄ and NO were 9.375 and 7.03 micromol/min, respectively), and the different conversions of NO and CH₄ were obtained by changing the weight of the catalyst samples from 9 to 500 mg.

ingly, the selectivities do not differ greatly for CoZSM-5 and HZSM-5 catalysts when comparison is made at the same conversion levels. This fact is in agreement with the data in Table 3 which also show that under these conditions CH₄ should be oxidized mainly by NO_x. An increase in temperature or a decrease in NO_x concentration should lead to enhancement of the competition between NO_x and O₂ for CH₄, and, consequently, by a decrease of the SCR selectivity. Moreover, at any given temperature the difference between the rates of CH₄ oxidation by the mixture of NO_x+O₂ and by O₂ alone is higher for HZSM-5 catalyst than for CoZSM-5 (Table 3). Thus, the competition between NO_x and O₂ for CH₄ should be stronger in the case with CoZSM-5.

The detailed consideration of the data obtained over CoZSM-5 at 400°C indicates that the change in the SCR selectivity begins at very low NO conversions where the rate of CH₄ oxidation by NO_x is much higher than with O₂ (see Table 3, line D). Thus, a question arises concerning the possibility of a competitive reaction of NO_x vs O₂ with an intermediate species, e.g., CH₃·. It is reasonable to think that such a competition may exist and be decisive in the control of the selectivity. For example, two separate reaction channels

$$CH_3 \cdot + NO \text{ (or } NO_2) \xrightarrow{k_1} CH_3 NO \text{ (or } CH_3 NO_2)$$

 $\rightarrow N_2 \text{ path (plus } CO_2 \text{ and } H_2 O)$ [1]


$$CH_3 \cdot + O_2 \xrightarrow{k_2} CH_3OO \cdot \rightarrow CO_2 + H_2O \text{ path}$$
 [2]

could control the formation of N_2 and CO_2 , respectively. Pursuing this possibility an attempt has been made to describe quantitatively the rates of NO reduction to N_2 and of CH₄ oxidation to CO₂ over CoZSM-5 catalysts at 400°C. The empirical pressure dependencies of the rates on NO and CH₄ have been determined from the data shown in Fig. 6. These reaction orders are in good agreement with the results obtained over a CoZSM-5 catalyst by Li *et al.* (16). Interestingly, the dependence of the rate of NO reduction into N_2 , r_{NO} , on NO pressure differs from that for CH₄ oxidation into CO₂, r_{CH_4} , but both reactions have the same dependence on CH₄ pressure. Thus the rates are expressed as

$$r_{\rm NO} = k_3 P_{\rm NO}^{0.45} P_{\rm CH_4}^{0.62}$$
[3]

$$r_{\rm CH_4} = k_4 P_{\rm CH_4}^{0.62}$$
 [4]

The fact that the two reactions have different kinetics is both interesting and significant. If Eq. [1] expresses the pathway for N₂ formation, a positive order in NO would be anticipated and if Eq. [2] describes the formation of CO_2 , a zero order dependence in O_2 has been demonstrated in Fig. 4. Both reactions have the *same* dependence on CH_4 concentrations because this reflects the necessary rate determining step, viz., the formation of the common

FIG. 6. Empirical orders for the rate of NO reduction into N₂ (A) and for the rate of CH₄ oxidation into CO₂ (B) with respect to NO and CH₄. Catalyst: 30 mg of CoZSM-5; GHSV = 75,000 h⁻¹; $T = 400^{\circ}$ C. For NO dependence the partial pressures of CH₄ and O₂ in feed were 0.0028 and 0.026 atm, respectively; for CH₄ dependence the partial pressures of NO and O₂ in feed were 0.0021 and 0.026 atm, respectively. The rates were calculated based on the conversions of the reactants in the range between 5 and 20%.

intermediate, CH₃, i.e.,

$$\begin{array}{l} \text{CH}_4 \ (\text{g}) + \text{NO}_2 \ (\text{ads}) \\ & \stackrel{k_5}{\rightarrow} \text{CH}_3 \cdot \ (\text{g}) + \text{NO} \ (\text{ads}) + \text{HO} \cdot \ (\text{g}) \ [\text{or HONO}] \end{array} \ [5] \end{array}$$

Because both NO and NO₂ are stable free radicals present in relatively high concentration, methane coupling was not observed. Instead, Eqs. [1] and [2] dominate leading ultimately to the formation of N₂ and CO₂. The HO· formed in Eq. [5] may also attack CH₄ forming a second CH₃·, i.e.,

$$HO \cdot + CH_4 \xrightarrow{\kappa_6} H_2O + CH_3 \cdot$$
 [6]

Obviously, the CH₃· free radical can react with O₂ or with NO or with NO₂ present in the system. Moreover, the rates of these reactions may be comparable in contrast to the corresponding rates of reaction with CH₄ (Fig. 1). However, for CH₄ oxidation the ratio of the rates of reactions of CH₃· with different oxidizing compounds is not important, since every reaction must ultimately result in the oxidation of every CH₃· into CO₂ and H₂O. The situation is different for NO reduction into N₂. In this case the ratios between reactions of CH₃· with NO, NO₂ and O₂ are very important, since reactions of NO_x will result in N₂ formation, while the reaction with O₂ can produce CO₂ and H₂O only. Thus, it may be suggested that even at low temperatures (400°C) a competition exists between NO_x and O₂ for the CH₃· radicals.

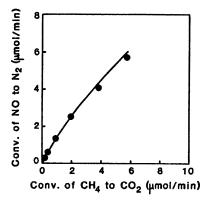
Equations [3] and [4] were numerically integrated to simulate the conversions of NO into N_2 and of CH_4 into CO_2 . The result of this calculation is shown as the solid line in Fig. 7. Agreement with the experimental points is satisfactory. Thus, not only the differential reaction kinetics but the kinetics in the integral reactor are adequately described by these equations.

To further simplify the kinetic analysis reactions [1] and [2] may be considered irreversible. Thus, two reaction chan-

nels are opened. One leads to N_2 as well as $CO_2 + H_2O$ and the other to only CO_2 and H_2O . We suppose (see discussion below) that N_2 is formed by NO_x reactions with the products of CH_3NO_x transformations. Thus, oxidation of one CH_4 can lead to the formation of one N_2 molecule and to the reduction of two NO molecules, i.e.,

$$CH_4 + 2NO + O_2 = CO_2 + 2H_2O + N_2$$
 [7]

Equation [7] shows that the selectivity when where is no contribution from Eq. [2] will be $N_2/CO_2 = 1.0$. This is the limiting slope of Fig. 7. Lower values indicate contribution from direct oxidation of CH₄ with O₂.


Before pursuing a microscopic treatment of the kinetics the physical picture must be clarified. It is known that over CoZSM-5 (18) and HZSM-5 (14) the oxidation of NO to NO₂ occurs at temperatures as low as 200–300°C. At 400°C and low conversions this means that comparable concentrations of NO and NO₂ are present in the gas phase. The NO₂/NO ratio will of course depend on the experimental conditions. However, it is well known that NO₂ is more strongly adsorbed than NO and therefore its site coverage may be assumed to be higher than that of NO, and in the steady state be effectively constant. However, Li *et al.* (16) have shown that H₂O is a strong reversible poison and hence this may limit the site coverage with NO₂. Taking these facts into account, the following relationships may be written:

NO₂ (g) + S = NO₂ (ads);
$$\theta_{NO_2} = K_{NO_2} P_{NO_2} (1 - \theta)$$
 [8]

and

$$H_2O(g) + S = H_2O(ads); \quad \theta_W = K_W P_W (1 - \theta), \quad [9]$$

where $(1-\theta)$ is the fraction of *all* the sites that are empty and θ_{NO_2} and θ_W are the fractions covered by NO₂ (ads) and H₂O (ads), respectively, (S simply indicates an available site). Since the infrared data indicate that NO is not strongly

FIG. 7. Comparison of experimental (points) and simulated (curve) selectivities of the SCR reaction over CoZSM-5 at 400°C. Experimental data were derived from Fig. 5. The solid line was obtained by numerical integration of Eqs. [3] and [4].

adsorbed at 400°C (18), it will be assumed that $\theta_{NO} \rightarrow O$ under our experimental conditions. It follows from Eq. [1] that

$$-r_{\rm NO} = 2r_{\rm N_2} = 2k_1\theta_{\rm NO_2}P_{\rm CH_3}.$$
 [10]

Li *et al.* (16) have shown that r_{N_2} is strongly poisoned (reversibly) by H₂O. Assuming the Langmuir description for competitive adsorption of the two strongly adsorbed species, NO₂ (ads) and H₂O (ads), we may write

$$\theta_{\rm NO_2} + \theta_{\rm W} = \frac{K_{\rm W} P_{\rm W} + K_{\rm NO_2} P_{\rm NO_2}}{1 + K_{\rm W} P_{\rm W} + K_{\rm NO_2} P_{\rm NO_2}},$$
[11]

where the subscript W stands for H₂O. Thus the $(1 - \theta)$ term of Eqs. [8] and [9] can be evaluated, i.e.,

$$(1 - \theta) = 1 - \frac{K_{W}P_{W} + K_{NO_{2}}P_{NO_{2}}}{1 + K_{W}P_{W} + K_{NO_{2}}P_{NO_{2}}}$$
$$= \frac{1}{1 + K_{W}P_{W} + K_{NO_{2}}P_{NO_{2}}}$$
[12]

It follows from Eq. [10] that

$$-r_{\rm NO} = 2r_{\rm N_2} = 2k_1\theta_{\rm NO_2}P_{\rm CH_3}$$
$$= \frac{2k_1K_{\rm NO_2}P_{\rm NO_2}P_{\rm CH_3}}{1+K_{\rm W}P_{\rm W}+K_{\rm NO_2}P_{\rm NO_2}}$$
[13]

Applying the steady state approximation to the methyl radical,

$$k_5 P_{\mathrm{CH}_4} \theta_{\mathrm{NO}_2} = k_1 \theta_{\mathrm{NO}_2} P_{\mathrm{CH}_3} + k_2 P_{\mathrm{O}_2} P_{\mathrm{CH}_3}$$

or

$$P_{\rm CH_3} = \frac{k_5 P_{\rm CH_4} \theta_{\rm NO_2}}{k_1 \theta_{\rm NO_2} + k_2 P_{\rm O_2}}$$
[14]

Inspection of Eq. [14] shows that the problem can be greatly simplified if the second term of the denominator can be neglected, i.e., when the selectivity for N₂ formation is high. Recalling that the CO₂ and H₂O produced concomitant with N₂ formation (1 CO₂ for each N₂) should not be counted as stemming from reaction of CH₃· with O₂, the neglect of this term should not introduce much error. The data suggest that this should be permissible at low conversion, particularly at low temperatures, although it obviously will not be true in general. Hence, for the present purposes it will be assumed that

$$P_{\mathrm{CH}_3} \approx (k_5/k_1) P_{\mathrm{CH}_4}$$
 [15]

This approximation is in agreement with our observation (Fig. 5) that at 400°C and low conversion the selectivity for forming N₂ rather than CO_2 is high, i.e., most of the reaction of CH_3 . goes via Eq. [1], not by Eq. [2]. Inserting Eq. [15] into Eq. [13] yields

$$-r_{\rm NO} = 2r_{\rm N_2} = \frac{2k_5 K_{\rm NO_2}}{1 + K_{\rm W} P_{\rm W} + K_{\rm NO_2} P_{\rm NO_2}} \left(P_{\rm NO_2} P_{\rm CH_4} \right)$$
[16]

This result is formally very similar to that obtained by Li *et al.* (16, 22) except that we focus on NO_2 as the key and dominant reaction intermediate leading to a free radical mechanism rather than NO.

Inverting Eq. [16] yields

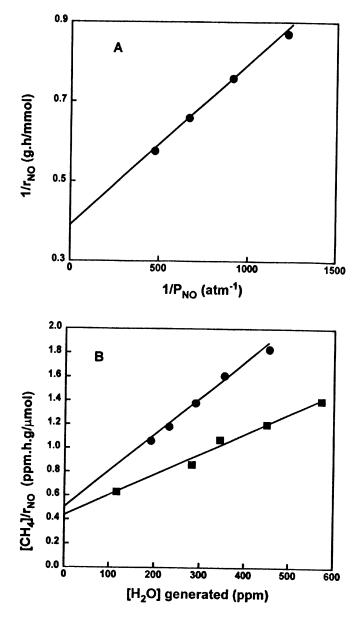
$$\frac{1}{r_{\rm NO}} = \frac{1 + K_{\rm W} P_{\rm W} + K_{\rm NO_2} P_{\rm NO_2}}{2k_5 K_{\rm NO_2} P_{\rm NO_2} P_{\rm CH_4}}$$
[17]

and when P_{CH_4} is held constant

$$\frac{1}{r_{\rm NO}} = \frac{1}{2k_5 P_{\rm CH_4}} + \frac{1 + K_{\rm W} P_{\rm W}}{2k_5 K_{\rm NO_2} P_{\rm CH_4}} \frac{1}{P_{\rm NO_2}}$$
[18]

This equation is of the Langmuir–Hinshelwood type. It is verified by the data in Fig. 8A. When P_{CH_4} is held constant, P_W cannot vary much under differential reaction conditions. Note that the intercept is dependent on the value of P_{CH_4} selected to be constant.

If $P_{\rm NO}$ is held constant while $P_{\rm CH_4}$ is varied, the relation becomes


$$\frac{P_{\rm CH_4}}{r_{\rm NO}} = \frac{1 + K_{\rm NO_2} P_{\rm NO_2}}{2k_5 K_{\rm NO_2} P_{\rm NO_2}} + \frac{K_{\rm W}}{2k_5 K_{\rm NO_2} P_{\rm NO_2}} P_{\rm W}$$
[19]

This relationship is confirmed by the linear plot shown as Fig. 8B. Here the P_W present was calculated from the H₂O produced in the reaction using a dry feed. It shows the effect of P_W on the left hand member as both the rate and H₂O formed are increased by increasing P_{CH_4} . Shown also are related data taken from Li *et al.* (16). Both sets of data show the predicted linear dependence.

Shelef *et al.* (12) have shown that when ratios of NO₂/NO ~40 are fed and reduced with C₃H₈ at 410°C in the presence of excess O₂, these ratios in the tail gas dropped to ~0.04, i.e., by three orders of magnitude. These same data showed that NO₂ was selectively removed from the gas leading to a substantial increase in [NO]. Thus, in the steady state in the gas phase [NO_x] \approx [NO]. This conclusion is further supported by the data of Yokoyama and Misono (13) who have found that over a number of ZSM-5 catalysts the steady state [NO₂] is much lower than [NO]. Thus it may be inferred that the catalytic sites are preferentially populated with NO₂ which is then preferentially reacted whether it is being made *in situ* or is initially present in the gas phase. This proposal is strongly supported by the experiments reported in Figs. 1 and 3.

The CH₃· radicals may be more or less free inside the pore systems of the MFI zeolites but, as shown by IR spectra taken at reaction temperatures (23, 24), adsorbed NO_y ($y \ge 2$) are stable. If it is assumed that the reaction sites are populated with NO₂, Eq. [5] may be interpreted as an Eley–Rideal reaction of gaseous CH₄ with chemisorbed NO_x within the pore system, i.e.,

$$r_{\mathrm{CH}_3} = k_5 \theta_{\mathrm{NO}_2} P_{\mathrm{CH}_4}$$
 [20]

FIG. 8. (A) Langmuir–Hinshelwood plots of $1/r_{NO}$ vs $1/P_{NO}$, and (B) P_{CH_4}/r_{NO} vs P_W for constant P_{NO} . \bullet , present work; \blacksquare , data taken from Ref. 16.

This is the rate determining step as required by the experiments of Cant and co-workers (19, 20).

Pathways of the SCR of NO_x

Our data suggest that the catalytic reduction of NO_x into N_2 and, consequently, the oxidation of CH_4 into CO_x are initiated by CH_4 interaction with adsorbed NO_2 . With CoZSM-5 and HZSM-5 catalysts the "light-off" occurs at $350^{\circ}C$ (Fig. 1) at a GHSV of 45,000 and 9,000 h⁻¹, respectively. In the empty tube the "light-off" of CH_4 combustion with NO_2 occurs about $450^{\circ}C$ (Fig. 3D). Under these conditions (homogeneous oxidation), the conversion of NO_2 into NO increased sharply with temperature and achieved 100% at 600°C. Formation of N₂ was not observed. With NaZSM-5 the same result was obtained (Fig. 3D). The chief difference, aside from temperature, between the catalytic and homogeneous reaction was this difference in the products obtained. In the presence of the NaZSM-5, CH₄ was oxidized into CO and CO₂ (the CO/CO₂ ratio was about 2) and the carbon balance was complete at all temperatures. In the empty tube the carbon balance did not close at 500° and 550°C, possibly due to the formation of formaldehyde (15). The suggestion of formaldehyde formation in the course of the homogeneous oxidation of CH_4 by NO_2 (15) is supported by the data of Irusta et al. (25) who showed that NO enhances formaldehyde yield during the homogeneous oxidation of CH_4 at the temperatures of interest (450–600°C). Also over NaZSM-5, N₂ did not form, and a rapid oxidation of methane and partial oxidation products occurred. It is interesting that Yokoyama and Misono reported that NaZSM-5 produced N₂ when NO₂ was substituted for NO in the SCR stream when C_3H_6 was the reducing gas (13).

Many years ago Wojciechowski and Laidler (26) studied the homogeneous decomposition of CH_4 and C_2H_6 in the presence of NO and concluded that the stable free radical NO could abstract an H atom from a paraffin molecule. Since NO₂ is also a stable free radical and a much stronger oxidizing agent than NO, we suggest that NO₂ abstracts an H atom from CH_4 forming CH_3 · radical via reaction (5). Because of their relatively high concentrations, either NO₂ or NO could play a role of radical trap. Therefore coupling of CH_3 · radicals would not be expected and was not observed. The formation of CH_3NO_2 and/or CH_3NO (reaction [4]) seems much more likely and have been found in the products (27).

A number of products other than CO, CO₂, N₂ and H₂O have been reported for various catalysts and a variety of hydrocarbons. The rule is that just because certain unusual products appear with one system does not necessarily mean that they will occur with others. Nevertheless, they must be considered as potential reaction intermediates. They include HNCO (7, 31), HCOO· (27), CH₃· (27), CH₂O (15), HCN (13, 30), C₂N₂ (13, 30), and oximes (32). Interestingly, free radical chemistry provides feasible routes by which these products may be formed and reacted.

The "light-off" temperature shift observed with CoZSM-5 and HZSM-5 may be explained by the catalytic formation of NO₂ or by the activation of an oxygen atom in NO₂ molecules adsorbed on the active sites. The existence of such molecules on Co-containing ferrierites at temperatures of interest (\sim 300°C) has been confirmed by the IR data obtained by Li *et al.* (18). The reaction of CH₄ with an oxygen atom of adsorbed NO₂ should occur faster, and consequently at the lower temperatures, than with the oxygen atom of the gaseous NO₂ molecule. The activation of an oxygen atom in the NO₂ molecule by the HZSM-5

catalyst is confirmed by occurrence of the decomposition reaction of NO₂ into NO $+\frac{1}{2}O_2$ and by the downward shift of the "light-off" temperature of reactions with NO₂ in comparison with the homogeneous case (7, 15).

Vannice and co-workers (28, 29) found that typical methane coupling catalysts were effective for the SCR reaction with CH_4 . Recently reported (32) calculations on CH_4 activation with an O atom adsorbed on the surface of a catalyst demonstrated that the abstraction of an H atom from CH_4 molecules with formation of CH_3 . free radicals should be energetically favorable compared with the other possible mechanisms of CH_4 activation. Thus, the chemistry of Eq. [5] seems plausible and free radical chemistry can occur within the zeolite pore system, just as it can in solution. However, the lack of molecular sieving effects with larger hydrocarbons (7) has led us to think that part of the reaction may occur homogeneously in the gas phase.

The idea that CH_3NO_2 may be involved in the process of N_2 formation is strongly supported by the experiments on CH_3NO_2 transformation reported by Yokoyama and Misono (13). At the present time it is not possible to define with certainty the reaction steps involved in N_2 formation but it is clear that N_2 can be produced by reaction of NO_2 with CH_3NO_2 .

On the Possible Role of Homogeneous Reactions in the SCR Process

The possibility exists that a part of the reactions occurring during the SCR process may proceed homogeneously in the gas phase. Two observations strongly support this view.

First, the analysis of the literature data, performed by Sinev et al. (32), shows that the release of the catalytically formed intermediate species (i.e., free radicals) into gas phase has been detected in a wide variety of oxidation reactions of different hydrocarbons including CH₄. Thus, a conclusion can be drawn that the presence of a homogeneous component in catalytic oxidation reactions is a common phenomenon. Methane coupling reaction is a good example. A homogeneous step is essential for formation of C₂ hydrocarbons (33–37). In the SCR process the formation of CH₃. free radicals seems plausible, although the release of these radicals from the zeolite channels into gas phase has not been proved. Nevertheless, a part of the catalyzed reactions that produce CH₃· radicals may occur on the exterior surface of the zeolite particles or at the pore mouths. If so, then the emanation of the reaction into gas phase becomes probable.

Second, it has been established (15) that formation of N_2 requires a catalyst, while oxidation of CH_4 by NO_x may occur at relatively high rate (at temperatures higher than 450°C) in the empty reactor. Thus, a part of CH_4 may be oxidized homogeneously.

Both processes considered above (emanation of CH₃· free radicals into the gas phase and homogeneous oxida-

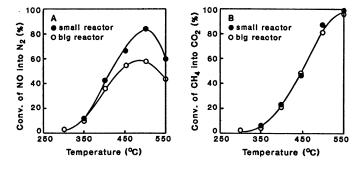


FIG. 9. Conversion of NO into N₂ (A) and conversion of CH₄ into CO₂ (B) over CoZSM-5 catalyst at various temperatures in different reactors. Volume of hot zone was about 7 and 2 ml in big and small reactors, respectively. Catalyst weight was 100 mg, feed contained 0.28% CH₄, 0.21% NO and 2.6% O₂ in He at a flow rate of 75 ml/min (GHSV = 22,500 h⁻¹).

tion of CH_4 by NO_x) should result in a decrease in the SCR selectivity since a catalyst is essential for N2 formation. The magnitude of this decrease should depend on the ratio between the free volume of the hot zone in the reactor and the volume occupied by a catalyst. A test was made by carrying out the SCR reaction in two very different reactors under otherwise identical conditions. Both contained the same weight of catalyst (100 mg), but one had a free volume of 7 ml in the "hot zone" while the other had only 2 ml. The results are reported in Fig. 9. They show that while the same amounts of methane are burned at every temperature, less N₂ is produced with the larger free volume. These data suggest that above 400°C an important fraction of the combustion reaction is homogeneous. Probably, these reactions took place in the reactor used by Cho (38), who found that a decrease in space velocity was followed by a decrease in the conversion of NO into N_2 during the SCR of NO with ethene and propene over CuZSM-5 catalyst.

The above results strongly suggest that the SCR of NO_x into N_2 with hydrocarbons in the presence of O_2 may be accompanied by reactions of hydrocarbon oxidation in the gas phase. This item is very important from both the scientific and practical point of view and, in our opinion, requires further serious investigation.

CONCLUSIONS

1. The SCR of NO with CH_4 in the presence of O_2 over CoZSM-5 and HZSM-5 catalysts is a complex catalytic reaction that proceeds via steps of competitive oxidation of CH_4 and intermediate species by NO_x and O_2 .

2. The pathways of the SCR process over the two catalysts studied are the same and may include: (i) the step of catalytic oxidation of NO by O_2 into NO_2 ; (ii) the step of NO_2 interaction with CH_4 that results in formation of CH_3 . free radicals; and (iii) the steps of interaction of CH_3 with NO_x and O_2 followed by the subsequent transformation of the products formed in these steps. In addition, at high

temperatures (above about 450°C) the direct oxidation of CH4 by O2 occurs.

3. NO reduction into N₂ and CH₄ oxidation into CO_x are coupled and initiated by the reaction of CH₄ with NO₂. The results suggest that this reaction may be considered as a limiting reaction step of the SCR reaction for the mixture of CH₄ + NO + O₂ when O₂ is present in large amounts. With this mixture when O₂ concentration is relatively low (up to about 1.5%) another reaction step, namely, the step of catalytic oxidation of NO by O₂ into NO₂ appears to control the rate of the SCR process. Thus, an important role of O₂ is to convert NO into NO₂.

4. At low temperatures (below 400°C) O_2 does not compete with NO_x for CH₄, but even at these temperatures O_2 participates in oxidation of the intermediate reaction species decreasing in this way the selectivity of the SCR process. At higher temperatures (above 450°C) a strong competition between O_2 and NO_x for CH₄ is observed and this results in a further decrease in the process selectivity. It is shown that the higher SCR selectivity of HZSM-5 catalyst in comparison with CoZSM-5 is due to the stronger competition between O_2 and NO₂ for CH₄ over the latter catalyst.

5. The formation of CH_3 free radical is postulated and possible reactions of this radical with NO_x , that form the pathways of the SCR process, are considered. Finally, the possible role of the gas phase reactions in the SCR process is discussed.

ACKNOWLEDGMENTS

Support for this work by the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, U.S. Department of Energy Grant No. DE-FG02-95ER14539 is gratefully acknowledged.

REFERENCES

- 1. Armor, J. N., Appl. Catal. B1, 221 (1992).
- 2. Iwamoto, M., Stud. Surf. Sci. Catal. 84, 1395 (1994).
- 3. Shelef, M., Chem. Rev. 95, 209 (1995).
- 4. Li, Y., and Armor, J. N., Appl. Catal. B1, L31 (1992).
- 5. Li, Y., and Armor, J. N., Appl. Catal. B 2, 239 (1993).
- Yogo, K., Umeno, M., Watanabe, H., and Kikuchi, E., *Catal. Lett.* 19, 131 (1993).
- 7. Witzel, F., Sill, G. A., and Hall, W. K., J. Catal. 149, 229 (1994).

- Armor, J. N., and Li, Y., Preprints of Symposium on NO_x Reduction. Vol. 39, p. 141. ACS, Division of Petroleum Chemistry, 1994.
- 9. Petunchi, J. O., and Hall, W. K., Appl. Catal. B 2, L17 (1993).
- Hamada, H., Kintaichi, Y., Sasaki, M., and Ito, T., *Appl. Catal.* **70**, L15 (1991).
- 11. Sasaki, M., Hamada, H., Kintaichi, Y., and Ito, T., *Catal. Lett.* **15**, 297 (1992).
- 12. Shelef, M., Montreuil, C. N., and Jen, H. W., Catal. Lett. 26, 277 (1994).
- Yokoyama, C., and Misono, M., J. Catal. 150, 9 (1994); J. Catal. 160, 95 (1996).
- 14. Yogo, K., and Kikuchi, E., Stud. Surf. Sci. Catal. 84, 1547 (1994).
- Lukyanov, D. B., Sill, G., d'Itri, J. L., and Hall, W. K., J. Catal. 153, 265 (1995).
- 16. Li, Y., Battavio, P. J., and Armor, J. N., J. Catal. 142, 561 (1993).
- 17. Petunchi, J. O., Sill, G., and Hall, W. K., Appl. Catal. B 2, 303 (1993).
- 18. Li, Y., Slager, T. L., and Armor, J. N., J. Catal. 150, 388 (1994).
- Cant, N. W., Kennedy, E. M., and Nelson, P. F., J. Phys. Chem. 97, 1445 (1993).
- Cowan, A. D., Dumpelmann, R., and Cant, N. W., J. Catal. 151, 356 (1995).
- 21. Li, Y., and Hall, W. K., J. Phys. Chem. 94, 6145 (1990).
- 22. Li, Y., and Armor, J. N., J. Catal. 150, 376 (1994).
- Bell, V. A., Feeley, J. S., Deeba, M., and Farrauto, R. J., *Catal. Lett.* 29, 15 (1994).
- Valyon, J., and Hall, W. K., *J. Phys. Chem.* 97, 1204 (1993); Beutel, T., Adelman, B. J., Lei, G.-D., and Sachtler, W. M. H., *Catal. Lett.* 32, 83 (1995).
- Irusta, S., Lombardo, E. A., and Miro, E. E., *Catal. Lett.* 29, 339 (1994).
- 26. Wojciechowski, B. W., and Laidler, K. J., Can. J. Chem. 38, 1027 (1960).
- Xie, S., Ballinger, T. H., Rosynek, M. P., and Lunsford, J. H., Proc. of 11th International Congress on Catalysis (Baltimore, MD) July 1996.
- 28. Zhang, X., Walters, A. B., and Vannice, M. A., J. Catal. 146, 568 (1994).
- Zhang, X., Walters, A. B., and Vannice, M. A., *Appl. Catal. B* 4, 237 (1994).
- Radtke, F., Koeppel, R. A., and Baiker, A., *Appl. Catal. A* 107, L125 (1994).
- Hayes, N. W., Grunert, W., Hutchings, G. J., Joyner, R. W., and Shpiro, E. S., J. Chem. Soc. Chem. Commun. 531 (1994).
- Sinev, M. Yu., Margolis, L. Ya., and Korchak, V. N., *Russian Chem. Rev.* 64, 349 (1995). [English translation]
- Driscoll, D. J., Martir, W., Wang, J.-X., and Lunsford, J. H., J. Am. Chem. Soc. 107, 58 (1985).
- Lin, C.-H., Campbell, K. D., Wang, J.-X., and Lunsford, J. H., J. Phys. Chem. 90, 534 (1986).
- Campbell, K. D., Morales, E., and Lunsford, J. H., J. Am. Chem. Soc. 109, 7900 (1987).
- 36. Campbell, K. D., and Lunsford, J. H., J. Phys. Chem. 92, 5792 (1988).
- 37. Lunsford, J. H., Langmuir 5, 12 (1989).
- 38. Cho, B. K., J. Catal. 142, 418 (1993).